A breakthrough innovation in Digital Broadcast Radio Receivers

Matthew Phillips VP Global Marketing CML Microcircuits Ltd

<u></u>

(((•)))

The continuing value of broadcast radio

- Although invented more than 100 years ago radio broadcasting remains a highly important media
 - In parts of Africa more than 80% of people say they get their main news and information from radio, more than from any other media
 - In Latin America the total number of community stations is more than 10000, in Brazil alone there are said to be 10000 more waiting for licenses
 - Radio is the media we can consume whilst we actually do something else, drive, answer email, write PowerPoint slides, read a novel, relax in the sunshine!
 - In times of natural disaster Radio provides a vital service when infrastructure is compromised
 - Radio broadcasting and audio content is still an important part of the 'media mix'

DRM the optimum radio broadcasting standard for now

- Digital Radio Mondiale (DRM) Digital Radio for **all**
- Suitable for all broadcasting bands worldwide from low frequency (LF) to Very High Frequency (150kHz to 222MHz)
- High quality modern audio codecs to allow premium listening experience regardless of frequencies chosen
- Open standard to ensure a wide diversity of equipment, receivers and IP suppliers open competition to give best consumer choice and value
- High capacity: more services, more content, more revenue in your available spectrum The radio spectrum is a limited natural resource DRM uses that resource more cost effectively than analogue or digital competitors
- Wide diversity of content: stereo music, high quality speech, background data services for news, information, education (Journaline) still pictures and much more

DRM the energy efficient broadcasting standard

We know DRM can use between 25% to 30% of the energy of analogue broadcasting – but what about compared to streaming?

Station scenario modelled	Approx <u>average</u> number of concurrent listeners	Approximate Power Consumption for Internet Streaming (Infrastructure + user devices)	Power Consumption using DRM Broadcasting (Transmitter infrastructure + receivers)	DRM vs Streaming
Nationwide News and Information Station covering area of UK	200,000	2900 kW	650kW (MF)	20%
Nationwide Music and Entertainment covering area of UK	1,000,000	14000 kW	900 kW (MF)	6.5%
Local FM broadcaster covering 625,000 people in 4,000 km2	6,000	164 kW	3.5 kW (VHF Band II)	4.5%

What is the crossover in audience size between Streaming and DRM Radio Broadcasting

Nationwide News and Information Station over area of UK	40,000	590 kW	590 kW (MF)	100%
Local FM broadcaster covering 625,000 people in 4000 km2	120	2.0 kW	2.0 kW (VHF Band II)	100%

Assumes internet based streaming consumes 250W per GByte of data streamed

All Rights Reserved © CML Microcircuits 2021

What is the key to enabling the benefits for DRM broadcasting?

- The technical standard is complete, published and open ready to use now!
- The Transmitter technology is mature, available and cost effective, now!
- The content management, delivery and transmission systems are available now!
- DRM fully coexists with analogue broadcasting the spectrum is available now
- There are no barriers to use for broadcasters and administrators!
- All that is needed now are attractive, cost effective, easy to use, easy to power listening devices !!!!!

Often known as Receivers!

The CML/CC DRM1000 DRM Receiver module

- Jointly developed by CML Microcircuits (CML) and Cambridge Consultants (CC)
- A core component to implement a full DRM capable broadcast receiver covering all bands
- Only 45mm x 25mm x 3mm in size
- Tuning 150kHz to 108MHz with no-gaps and supporting AM/FM/DRM broadcasts
- Antenna to speaker solution including simple portable radio UI without a 'host'
- Serial port control for more complex devices using a 'host' to facilitate an advanced UI, display of data services (Journaline) or embedding in other devices
- Less than 350mW power consumption @ 60% volume driving a 1W speaker in all use cases no power • penalty compared with analogue broadcasting
- Meets DRM Consortium Minimum Receiver Specification v4.2, support for Emergency warning function, • alternative service frequencies etc.
- All DRM modes and codecs included
- Use of the module includes license to use all relevant patents and IP as used in the DRM standard by the • receiver manufacturer
- A pre-engineered building block to allow local manufacturers to flourish in their 'home' markets
- Key Benefits: Power, Size, Cost

30+ hours from 3 AA cells (assuming 100mW to speaker) Or rechargeable with solar and / or hand-cranked charging

DRM1000 – Technical Realisation

- DRM1000 integrates three main IC's in its design
- CML, CMX918 a single IC Software Defined Radio Tuner IC covering 150kHz to 108MHz, operating at 3.0V supply and 25mA current consumption
 - Low 1st IF architecture, Front end and IF amplifiers, Fractional-N frequency synthesiser, Integrated VCO, Image Rejection mixer, 16bit ADC's and programmable digital channel filters
- Very low power μC with DSP originally designed for IoT 'edge' processing applications running a CC developed software baseband, AM, FM demodulators, DRM OFDM demodulation, all audio codecs filtering and user interface handling
- CML, CMX655 audio codec and class 'D' 1W speaker amplifier
- Power and battery management functions are also included

Why is low power a breakthrough?

- A DRM1000 receiver will play for 30 hours continuously on 3 x AA cells
- 12 hours play time from a 1200mAH rechargeable
 - 5 to 6 hours of daylight on a 16cm x 7.5cm solar cell to recharge
 - Typically 10 mins of 'hand-cranking' to recharge

Why is size a breakthrough?

- Small size allows attractive convenient consumer devices with DRM listening at their heart
 - True Pocket Radios
 - Smartphone Accessories with embedded DRM
 - Wireless Speakers
 - Headsets

Why is cost a breakthrough?

- DRM broadcast infrastructure can cover millions of listeners at low cost
- DRM broadcasts can inform and educate at low cost
- DRM broadcasts can enrich peoples lives with music, drama and culture
- DRM broadcasts are 'free to air' no monthly fees, no service charges
- Cost effective DRM receivers with 'free' energy recharge reach millions of low income citizens and 'connect' the 'unconnected'

DRM1000 current status and summary

- The DRM1000 is in its final development stages
- All functions and modes now operational
- Meeting DRM Consortium and ETSI receiver standard specifications
- Demonstrating to customers now
- Final version module and firmware slated for completion end of Q1 2023
- Available to buy globally from early Q2 2023

Thank you

?

((•))

•